26660 measured reflections

 $R_{\rm int} = 0.042$

7349 independent reflections

4328 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diethyl 2-{[3-(2,4,6-trimethylbenzyl)-1phenylsulfonyl-1H-indol-2-yl]methylidene}propanedioate

B. Saravanan,^a V. Dhayalan,^b A. K. Mohanakrishnan,^b G. Chakkaravarthi^c and V. Manivannan^d*

^aDepartment of Physics, J. J. College of Arts and Science, Pudukkottai 622 422, Tamil Nadu, India, ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, ^cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and ^dDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India Correspondence e-mail: manivan1948@yahoo.com

Received 15 May 2010; accepted 25 May 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; R factor = 0.062; wR factor = 0.211; data-to-parameter ratio = 19.9.

In the title compound, C₃₂H₃₃NO₆S, the indole ring system makes dihedral angles of 62.78 (10) and 80.53 (8)°, respectively, with the phenyl and benzene rings. In the crystal, the molecules are linked through intermolecular C-H···O hydrogen bonds, forming a chain along the a axis. Between the chains, a weak aromatic π - π stacking interaction [centroid–centroid distance = 3.831(2) Å] is observed.

Related literature

For the biological activity of indole derivatives, see: Ma et al. (2001); Zhao et al. (2002); Zhou et al. (2006). For related structures, see: Chakkaravarthi et al. (2007, 2008).

Experimental

Crystal data

C ₃₂ H ₃₃ NO ₆ S	$\gamma = 86.736 \ (3)^{\circ}$
$M_r = 559.65$	V = 1463.99 (12) Å ³
Triclinic, P1	Z = 2
a = 8.5103 (4) Å	Mo $K\alpha$ radiation
b = 8.9540 (4) Å	$\mu = 0.16 \text{ mm}^{-1}$
c = 19.6546 (10) Å	$T = 295 { m K}$
$\alpha = 78.456 \ (3)^{\circ}$	$0.22 \times 0.18 \times 0.16 \text{ mm}$
$\beta = 87.236 \ (4)^{\circ}$	

Data collection

Bruker Kappa APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.967, T_{\max} = 0.976$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.062$	H atoms treated by a mixture of
$wR(F^2) = 0.211$	independent and constrained
S = 1.03	refinement
7349 reflections	$\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ Å}^{-3}$
370 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$
2 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C10-H10\cdots O4^{i}$	0.93	2.43	3.179 (4)	138
Symmetry code: (i) $r \pm 1$	1 N 7			

Symmetry code: (i) x + 1, y, z.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

The authors wish to acknowledge DV University of Madras for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2550).

References

Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

- Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2007) Acta Cryst E63 03698
- Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.
- Ma, C., Liu, X., Li, X., Flippen-Anderson, J., Yu, S. & Cook, J. M. (2001). J. Org. Chem. 66, 4525-4542.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zhao, S., Liao, X. & Cook, J. M. (2002). Org. Lett. 4, 687-690.
- Zhou, H., Liao, X., Yin, W., Ma, J. & Cook, J. M. (2006). J. Org. Chem. 71, 251-259.

Acta Cryst. (2010). E66, o1509 [doi:10.1107/S1600536810019690]

Diethyl 2-{[3-(2,4,6-trimethylbenzyl)-1-phenylsulfonyl-1*H*-indol-2-yl]methylidene}propanedioate

B. Saravanan, V. Dhayalan, A. K. Mohanakrishnan, G. Chakkaravarthi and V. Manivannan

Comment

Indole derivatives are found to possess anticancer, antimalarial and antihypertensive activities (Ma *et al.*, 2001; Zhou *et al.*, 2006; Zhao *et al.*, 2002). In continuation of our studies in indole derivatives, we report the crystal structure of the title compound, (I). The geometric parameters of (I) (Fig. 1) agree with those in the reported structures (Chakkaravarthi *et al.*, 2007, 2008).

The nine-membered indole ring system forms dihedral angles of 62.78 (10) and 80.53 (8)° with the phenyl ring (C1–C6) and benzene ring (C24–C29), respectively. The torsion angles O2–S1–N1–C7 and O1–S1–N1–C14 [-37.8 (2)° and 62.87 (18)°, respectively] indicate the *syn*-conformation of the sulfonyl moiety. The sum of the bond angles around N1 [342.1 (2)°] indicates that N1 is sp^3 -hybridized.

The molecular structure is stabilized by a weak intramolecular C—H···O interaction and the crystal packing of (I) (Fig. 2) exhibits weak intermolecular C—H···O (Table 1) and π - π interactions [*Cg*···*Cg* (-x, -y, 1-z) distance of 3.831 (2) Å]; *Cg* is the centroid of the C1–C6 ring.

Experimental

To a solution of diethyl-2-((3-(bromomethyl)-1-(phenylsulfonyl) -1*H*-indol-2-yl)methylene)malonate (0.3 g, 0.57 mmol) in dry 1,2-dichloroethane (15 ml), anhydrous ZnBr₂ (0.25 g, 1.11 mmol) and mesitylene (0.19 ml, 1.41 mmol) were added. It was then refluxed for 4 h under N₂ atmosphere. The solvent was removed and the residue was quenched with ice-water (50 ml) containing 1 ml of conc. HCl, extracted with chloroform (2×10 ml) and dried (Na₂SO₄). Removal of solvent followed by flash column chromatographic purification (n-hexane/ethyl acetate 98:2) led to the isolation of product as a colourless crystal.

Refinement

H atom attached to C15 was located from a difference Fourier map and refined freely. All other H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic C—H, C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene, and C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl. C21—C22 and C18—C19 distances were restrained to 1.550 (7) Å.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Fig. 2. The packing of (I), viewed down the c axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Diethyl 2-{[3-(2,4,6-trimethylbenzyl)-1-phenylsulfonyl- 1*H*-indol-2-yl]methylidene}propanedioate

Crystal data	
C ₃₂ H ₃₃ NO ₆ S	<i>Z</i> = 2
$M_r = 559.65$	F(000) = 592
Triclinic, <i>P</i> T	$D_{\rm x} = 1.270 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.5103 (4) Å	Cell parameters from 7772 reflections
b = 8.9540 (4) Å	$\theta = 2.4 - 24.3^{\circ}$
c = 19.6546 (10) Å	$\mu = 0.16 \text{ mm}^{-1}$
$\alpha = 78.456 \ (3)^{\circ}$	T = 295 K
$\beta = 87.236 \ (4)^{\circ}$	Block, colourless
$\gamma = 86.736 \ (3)^{\circ}$	$0.22\times0.18\times0.16~mm$
$V = 1463.99 (12) \text{ Å}^3$	

Data collection

Bruker Kappa APEXII diffractometer	7349 independent reflections
Radiation source: fine-focus sealed tube	4328 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.042$
ω and ϕ scans	$\theta_{\text{max}} = 28.5^{\circ}, \ \theta_{\text{min}} = 1.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 10$
$T_{\min} = 0.967, \ T_{\max} = 0.976$	$k = -11 \rightarrow 11$
26660 measured reflections	$l = -26 \rightarrow 22$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.062$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.211$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.03	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.105P)^{2} + 0.4069P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
7349 reflections	$(\Delta/\sigma)_{max} \leq 0.001$
370 parameters	$\Delta \rho_{max} = 0.42 \text{ e} \text{ Å}^{-3}$
2 restraints	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	-0.00108 (7)	0.35985 (9)	0.37321 (3)	0.0626 (2)
01	-0.0678 (2)	0.4651 (3)	0.41334 (11)	0.0837 (6)
O2	-0.0971 (2)	0.2939 (3)	0.33112 (10)	0.0790 (6)
O3	-0.0750 (3)	0.2569 (3)	0.11855 (14)	0.1099 (9)
O4	-0.1997 (3)	0.6190 (3)	0.21742 (15)	0.1050 (8)
O5	-0.1945 (3)	0.4863 (3)	0.08992 (14)	0.1139 (9)
O6	0.0438 (3)	0.6904 (2)	0.18672 (12)	0.0852 (6)
N1	0.1367 (2)	0.4543 (2)	0.31990 (10)	0.0526 (5)
C1	0.1061 (3)	0.2144 (3)	0.42788 (13)	0.0598 (6)
C2	0.1303 (4)	0.2243 (4)	0.49532 (16)	0.0859 (9)
H2	0.0909	0.3089	0.5126	0.103*
C3	0.2130 (5)	0.1083 (5)	0.5370 (2)	0.1025 (12)
H3	0.2274	0.1134	0.5831	0.123*
C4	0.2739 (5)	-0.0135 (5)	0.5118 (2)	0.1069 (13)
H4	0.3293	-0.0919	0.5406	0.128*
C5	0.2542 (6)	-0.0217 (4)	0.4438 (3)	0.1226 (16)
H5	0.2988	-0.1040	0.4261	0.147*
C6	0.1677 (5)	0.0930 (3)	0.40152 (18)	0.0889 (10)
H6	0.1518	0.0873	0.3556	0.107*
C7	0.2050 (3)	0.3920 (3)	0.26267 (12)	0.0489 (5)
C8	0.3634 (3)	0.4001 (2)	0.26078 (12)	0.0487 (5)
C9	0.4031 (3)	0.4704 (2)	0.31715 (12)	0.0490 (5)
C10	0.5466 (3)	0.5094 (3)	0.33863 (15)	0.0623 (6)
H10	0.6403	0.4902	0.3148	0.075*
C11	0.5468 (4)	0.5764 (3)	0.39536 (16)	0.0722 (8)
H11	0.6416	0.6032	0.4102	0.087*
C12	0.4072 (4)	0.6049 (3)	0.43112 (16)	0.0721 (8)
H12	0.4106	0.6489	0.4700	0.087*
C13	0.2652 (3)	0.5699 (3)	0.41068 (14)	0.0653 (7)

H13	0.1721	0.5906	0.4346	0.078*
C14	0.2644 (3)	0.5025 (3)	0.35296 (12)	0.0503 (5)
C15	0.1071 (3)	0.3562 (3)	0.20960 (13)	0.0563 (6)
C16	-0.0135 (3)	0.4425 (3)	0.18005 (13)	0.0592 (6)
C17	-0.0687 (4)	0.5916 (3)	0.19722 (14)	0.0671 (7)
C18	0.0018 (6)	0.8430 (4)	0.1979 (2)	0.1203 (15)
H19A	-0.1097	0.8655	0.1904	0.144*
H19B	0.0600	0.9163	0.1644	0.144*
C19	0.0364 (8)	0.8585 (6)	0.2684 (3)	0.161 (2)
H66A	-0.0292	0.7935	0.3014	0.241*
H66B	0.0159	0.9626	0.2730	0.241*
H66C	0.1451	0.8294	0.2769	0.241*
C20	-0.1044 (4)	0.4002 (4)	0.12446 (16)	0.0763 (8)
C21	-0.1577 (6)	0.2046 (7)	0.0635 (2)	0.1310 (17)
H21A	-0.1874	0.0999	0.0792	0.157*
H21B	-0.2520	0.2685	0.0512	0.157*
C22	-0.0463 (8)	0.2163 (10)	0.0041 (3)	0.191 (3)
H33A	0.0557	0.1769	0.0198	0.287*
H33B	-0.0402	0.3214	-0.0185	0.287*
H33C	-0.0812	0.1584	-0.0280	0.287*
C23	0.4831 (3)	0.3629 (3)	0.20674 (15)	0.0629 (7)
H23A	0.5870	0.3602	0.2253	0.076*
H23B	0.4785	0.4456	0.1665	0.076*
C24	0.4654 (3)	0.2139 (3)	0.18243 (12)	0.0514 (5)
C25	0.4139 (3)	0.2122 (3)	0.11623 (12)	0.0545 (6)
C26	0.4067 (3)	0.0728 (3)	0.09579 (14)	0.0637 (7)
H26	0.3716	0.0719	0.0518	0.076*
C27	0.4493 (3)	-0.0634(3)	0.13816 (16)	0.0683 (7)
C28	0.5004 (4)	-0.0589 (3)	0.20301 (16)	0.0722 (8)
H28	0.5302	-0.1500	0.2324	0.087*
C29	0.5091 (3)	0.0768 (3)	0.22612 (13)	0.0606 (6)
C30	0.3701 (4)	0.3567 (3)	0.06561 (15)	0.0847 (9)
H30A	0.4612	0.4166	0.0538	0.127*
H30B	0.2894	0.4142	0.0865	0.127*
H30C	0.3319	0.3315	0.0244	0.127*
C31	0.4440 (5)	-0.2144(4)	0.1150 (2)	0.1061 (13)
H31A	0.5475	-0.2632	0.1164	0.159*
H31B	0.4078	-0.1970	0.0685	0.159*
H31C	0.3732	-0.2789	0.1456	0.159*
C32	0.5710 (5)	0.0727 (5)	0.29715 (17)	0.0964 (11)
H32A	0.5875	-0.0314	0.3207	0.145*
H32B	0.4960	0.1244	0.3236	0.145*
H32C	0.6690	0.1227	0.2924	0.145*
H15	0.143 (4)	0.268 (4)	0.1932 (16)	0.085 (9)*
	~ /	~ /		× /
Atomic displaceme	ent parameters $(Å^2)$			
since anoptice onice	· · · · · · · · · · · · · · · · · · ·			

 U^{11} U^{22} U^{33} U^{12} U^{13} U^{23}

S1	0.0375 (3)	0.0952 (5)	0.0569 (4)	0.0061 (3)	-0.0024 (3)	-0.0216 (3)
01	0.0545 (11)	0.1244 (17)	0.0742 (13)	0.0296 (11)	0.0046 (9)	-0.0356 (12)
O2	0.0433 (10)	0.1292 (17)	0.0664 (11)	-0.0156 (10)	-0.0065 (8)	-0.0196 (12)
O3	0.116 (2)	0.123 (2)	0.1081 (18)	0.0088 (16)	-0.0507 (16)	-0.0572 (16)
O4	0.0776 (16)	0.0955 (16)	0.132 (2)	0.0165 (13)	0.0206 (15)	-0.0106 (15)
O5	0.114 (2)	0.134 (2)	0.0925 (17)	0.0064 (17)	-0.0521 (16)	-0.0129 (16)
O6	0.0803 (14)	0.0767 (13)	0.1012 (16)	-0.0048 (11)	-0.0096 (12)	-0.0222 (12)
N1	0.0419 (10)	0.0665 (12)	0.0531 (11)	0.0079 (9)	-0.0069 (8)	-0.0224 (9)
C1	0.0464 (13)	0.0751 (16)	0.0592 (14)	-0.0097 (12)	-0.0018 (11)	-0.0144 (12)
C2	0.082 (2)	0.112 (2)	0.0647 (18)	0.0148 (19)	-0.0113 (16)	-0.0244 (18)
C3	0.100 (3)	0.126 (3)	0.076 (2)	0.005 (2)	-0.025 (2)	-0.003 (2)
C4	0.112 (3)	0.079 (2)	0.117 (3)	-0.005 (2)	-0.026 (3)	0.016 (2)
C5	0.171 (5)	0.0572 (19)	0.136 (4)	0.013 (2)	-0.016 (3)	-0.014 (2)
C6	0.126 (3)	0.0638 (17)	0.080 (2)	-0.0078 (18)	-0.013 (2)	-0.0185 (16)
C7	0.0446 (12)	0.0520 (12)	0.0521 (12)	0.0033 (9)	-0.0016 (10)	-0.0168 (10)
C8	0.0460 (12)	0.0451 (11)	0.0557 (13)	0.0033 (9)	-0.0004 (10)	-0.0132 (10)
С9	0.0453 (12)	0.0443 (11)	0.0578 (13)	0.0030 (9)	-0.0075 (10)	-0.0111 (10)
C10	0.0492 (14)	0.0630 (15)	0.0762 (17)	-0.0023(11)	-0.0088(12)	-0.0160 (13)
C11	0.0664 (18)	0.0683 (16)	0.087 (2)	-0.0012(13)	-0.0280(15)	-0.0228(15)
C12	0.081 (2)	0.0662 (16)	0.0774 (18)	0.0166 (14)	-0.0329(16)	-0.0323(14)
C13	0.0630 (16)	0.0722 (16)	0.0663 (16)	0.0201 (13)	-0.0149(13)	-0.0305(13)
C14	0.0471 (12)	0.0492(12)	0.0571 (13)	0.0112(10)	-0.0116(10)	-0.0175(10)
C15	0.0494(13)	0.0685(15)	0.0556 (14)	-0.0023(11)	0.0002 (11)	-0.0243(12)
C16	0.0516(14)	0.0766 (16)	0.0336(11) 0.0496(13)	-0.0025(11)	-0.0022(11)	-0.0121(12)
C17	0.0510(11) 0.0627(17)	0.0700(10) 0.0747(17)	0.0579(15)	0.0066 (12)	-0.0037(13)	-0.00121(12)
C18	0.0027(17) 0.129(4)	0.0747(17)	0.0577(15) 0.152(4)	0.0000(14)	-0.020(3)	-0.025(3)
C10	0.129(4) 0.221(7)	0.000(2) 0.123(4)	0.152(4)	0.010(2)	-0.067(5)	-0.025(3)
C19	0.221(7)	0.123(4)	0.138(3)	-0.0061(16)	-0.0127(14)	-0.0151(16)
C20	0.0037(13)	0.100(2) 0.178(5)	0.0058(17)	-0.015(3)	-0.037(3)	-0.069(3)
C21	0.119(4)	0.178(3)	0.110(3) 0.127(4)	-0.039(6)	-0.001(4)	-0.109(5)
C22	0.170(0)	0.307(9)	0.127(4)	-0.0094(12)	0.001(4)	-0.0250(12)
C23	0.0344(14) 0.0454(12)	0.0030(14)	0.0751(17)	-0.0084(12)	0.0100(12)	-0.0230(13)
C24	0.0434(12) 0.0524(12)	0.0514(12)	0.0301(13)	0.0037(10)	0.0003(10)	-0.0110(10)
C25	0.0534 (13)	0.0565 (13)	0.0496 (13)	0.00/1(10)	0.0074 (10)	-0.0058(10)
C26	0.0599 (15)	0.0753 (17)	0.0586 (15)	0.0010 (13)	0.0005 (12)	-0.0217(13)
C27	0.0668 (17)	0.0553 (14)	0.0840 (19)	0.0031 (12)	0.0043 (14)	-0.0204 (14)
C28	0.0753 (19)	0.0520 (14)	0.082 (2)	0.01/4 (13)	-0.0007(15)	-0.0013(13)
C29	0.0551 (14)	0.0650 (15)	0.0589 (15)	0.0131 (12)	-0.0055 (11)	-0.0092 (12)
C30	0.106 (3)	0.0/39 (18)	0.0615 (17)	0.01/6(1/)	0.0107 (16)	0.0080 (14)
C31	0.113 (3)	0.0680 (19)	0.146 (3)	-0.0031 (19)	0.008 (3)	-0.046 (2)
C32	0.096 (3)	0.117 (3)	0.074 (2)	0.029 (2)	-0.0270 (18)	-0.0164 (19)
Geometric parar	neters (Å, °)					
S1—O2		1.420 (2)	С15—Н	15	0.94 (3	3)
S1—O1		1.424 (2)	C16—C	17	1.487	(4)
S1—N1		1.682 (2)	C16—C	20	1.488	(4)
S1—C1		1.755 (3)	C18—C	19	1.465	(5)
O3—C20		1.320 (4)	С18—Н	19A	0.9700)
O3—C21		1.483 (4)	С18—Н	19B	0.9700)

O4—C17	1.194 (4)	С19—Н66А	0.9600
O5—C20	1.190 (4)	С19—Н66В	0.9600
O6—C17	1.321 (4)	С19—Н66С	0.9600
O6—C18	1.449 (4)	C21—C22	1.458 (5)
N1—C14	1.422 (3)	C21—H21A	0.9700
N1—C7	1.438 (3)	C21—H21B	0.9700
C1—C6	1.363 (4)	С22—Н33А	0.9600
C1—C2	1.372 (4)	С22—Н33В	0.9600
C2—C3	1.370 (5)	С22—Н33С	0.9600
С2—Н2	0.9300	C23—C24	1.522 (3)
C3—C4	1.354 (6)	С23—Н23А	0.9700
С3—Н3	0.9300	С23—Н23В	0.9700
C4—C5	1.371 (6)	C24—C29	1.392 (3)
С4—Н4	0.9300	C24—C25	1.396 (3)
С5—С6	1.386 (5)	C25—C26	1.391 (3)
С5—Н5	0.9300	C25—C30	1.506 (4)
С6—Н6	0.9300	C26—C27	1.373 (4)
С7—С8	1.353 (3)	C26—H26	0.9300
C7—C15	1.460 (3)	C27—C28	1.375 (4)
С8—С9	1.441 (3)	C27—C31	1.514 (4)
C8—C23	1.508 (3)	C28—C29	1.387 (4)
C9—C14	1.391 (3)	C28—H28	0.9300
C9—C10	1.396 (3)	C29—C32	1.509 (4)
C10—C11	1.368 (4)	С30—Н30А	0.9600
C10—H10	0.9300	С30—Н30В	0.9600
C11—C12	1.389 (4)	С30—Н30С	0.9600
C11—H11	0.9300	C31—H31A	0.9600
C12—C13	1.364 (4)	C31—H31B	0.9600
C12—H12	0.9300	C31—H31C	0.9600
C13—C14	1.388 (3)	С32—Н32А	0.9600
С13—Н13	0.9300	С32—Н32В	0.9600
C15—C16	1.332 (4)	С32—Н32С	0.9600
O2—S1—O1	120.54 (13)	C19—C18—H19B	109.4
O2—S1—N1	106.83 (11)	H19A—C18—H19B	108.0
O1—S1—N1	105.76 (13)	С18—С19—Н66А	109.5
O2—S1—C1	109.32 (13)	С18—С19—Н66В	109.5
01—S1—C1	108.79 (13)	Н66А—С19—Н66В	109.5
N1—S1—C1	104.36 (11)	С18—С19—Н66С	109.5
C20—O3—C21	116.6 (3)	Н66А—С19—Н66С	109.5
C17—O6—C18	117.1 (3)	Н66В—С19—Н66С	109.5
C14—N1—C7	106.24 (18)	O5—C20—O3	124.2 (3)
C14—N1—S1	115.80 (16)	O5—C20—C16	123.4 (3)
C7—N1—S1	120.08 (16)	O3—C20—C16	112.5 (3)
C6—C1—C2	120.7 (3)	C22—C21—O3	105.9 (4)
C6—C1—S1	118.6 (2)	C22—C21—H21A	110.5
C2—C1—S1	120.7 (2)	O3—C21—H21A	110.5
C3—C2—C1	119.4 (3)	C22—C21—H21B	110.5
С3—С2—Н2	120.3	O3—C21—H21B	110.5
С1—С2—Н2	120.3	H21A—C21—H21B	108.7

C4—C3—C2	120.6 (4)	С21—С22—Н33А	109.5
С4—С3—Н3	119.7	С21—С22—Н33В	109.5
С2—С3—Н3	119.7	H33A—C22—H33B	109.5
C3—C4—C5	120.2 (4)	С21—С22—Н33С	109.5
C3—C4—H4	119.9	Н33А—С22—Н33С	109.5
C5—C4—H4	119.9	H33B—C22—H33C	109.5
C4—C5—C6	119.7 (4)	C8—C23—C24	116.5 (2)
C4—C5—H5	120.1	C8—C23—H23A	108.2
С6—С5—Н5	120.1	C24—C23—H23A	108.2
C1 - C6 - C5	119 3 (3)	C8—C23—H23B	108.2
C1—C6—H6	120.4	C24—C23—H23B	108.2
C5—C6—H6	120.4	H23A-C23-H23B	107.3
C8 - C7 - N1	109 75 (19)	$C_{29} - C_{24} - C_{25}$	119 5 (2)
C8 - C7 - C15	109.75(19)	$C_{29} = C_{24} = C_{23}$	119.0(2)
N1 - C7 - C15	120.0(2) 121.3(2)	$C_{25} = C_{24} = C_{23}$	117.0(2) 121.5(2)
C7 - C8 - C9	121.3(2) 107.7(2)	$C_{25} = C_{25} = C_{25}$	121.3(2) 1180(2)
$C_{7} = C_{8} = C_{7}^{3}$	107.7(2) 128.9(2)	$C_{20} = C_{25} = C_{24}$	110.9(2)
$C_{1} = C_{2} = C_{2}$	120.9(2) 122.0(2)	$C_{20} = C_{25} = C_{30}$	119.0(2) 122.1(2)
$C_{3} = C_{3} = C_{23}$	123.0(2)	$C_{24} = C_{25} = C_{30}$	122.1(2) 122.4(2)
C14 = C9 = C10	119.3(2)	$C_2/-C_{20}-C_{23}$	122.4 (5)
$C_{14} - C_{9} - C_{8}$	108.2(2)	$C_2/-C_{20}-H_{20}$	110.0
$C_{10} = C_{9} = C_{8}$	132.3 (2)	C25-C26-H26	118.8
C11 = C10 = C9	118.7 (5)	$C_{20} = C_{27} = C_{28}$	117.0(2)
C11-C10-H10	120.6	$C_{26} = C_{27} = C_{31}$	122.1 (3)
C9—C10—H10	120.6	$C_{28} = C_{27} = C_{31}$	120.2(3)
	120.8 (3)	$C_2/-C_{28}-C_{29}$	122.3 (2)
	119.6	C27—C28—H28	118.9
С12—С11—Н11	119.6	C29—C28—H28	118.9
C13—C12—C11	121.7 (3)	C28—C29—C24	119.3 (2)
C13—C12—H12	119.1	C28—C29—C32	119.1 (3)
С11—С12—Н12	119.1	C24—C29—C32	121.6 (3)
C12—C13—C14	117.7 (3)	С25—С30—Н30А	109.5
С12—С13—Н13	121.1	С25—С30—Н30В	109.5
C14—C13—H13	121.1	H30A—C30—H30B	109.5
C13—C14—C9	121.5 (2)	С25—С30—Н30С	109.5
C13—C14—N1	130.4 (2)	H30A—C30—H30C	109.5
C9—C14—N1	108.11 (19)	H30B—C30—H30C	109.5
C16—C15—C7	126.1 (2)	С27—С31—Н31А	109.5
C16—C15—H15	120.2 (19)	С27—С31—Н31В	109.5
C7—C15—H15	113.4 (19)	H31A—C31—H31B	109.5
C15—C16—C17	124.2 (2)	С27—С31—Н31С	109.5
C15-C16-C20	122.8 (3)	H31A—C31—H31C	109.5
C17—C16—C20	113.0 (2)	H31B—C31—H31C	109.5
O4—C17—O6	124.2 (3)	C29—C32—H32A	109.5
O4—C17—C16	123.9 (3)	С29—С32—Н32В	109.5
O6—C17—C16	112.0 (2)	H32A—C32—H32B	109.5
O6—C18—C19	111.3 (4)	С29—С32—Н32С	109.5
O6—C18—H19A	109.4	H32A—C32—H32C	109.5
C19—C18—H19A	109.4	H32B—C32—H32C	109.5
O6—C18—H19B	109.4		

O2-S1-N1-C14	-167.56 (16)	C7—N1—C14—C13	-179.8 (3)
O1—S1—N1—C14	62.87 (18)	S1—N1—C14—C13	-43.7 (3)
C1—S1—N1—C14	-51.82 (18)	C7—N1—C14—C9	0.0 (2)
O2—S1—N1—C7	-37.8 (2)	S1—N1—C14—C9	136.08 (18)
O1—S1—N1—C7	-167.42 (17)	C8—C7—C15—C16	-124.3 (3)
C1—S1—N1—C7	77.89 (19)	N1-C7-C15-C16	42.8 (4)
O2—S1—C1—C6	40.3 (3)	C7-C15-C16-C17	-0.3 (4)
O1—S1—C1—C6	173.8 (2)	C7—C15—C16—C20	177.9 (2)
N1—S1—C1—C6	-73.7 (3)	C18—O6—C17—O4	-2.7 (5)
O2—S1—C1—C2	-141.1 (2)	C18—O6—C17—C16	176.6 (3)
O1—S1—C1—C2	-7.6 (3)	C15—C16—C17—O4	-122.4 (3)
N1—S1—C1—C2	104.9 (3)	C20-C16-C17-O4	59.2 (4)
C6—C1—C2—C3	-2.1 (5)	C15—C16—C17—O6	58.3 (4)
S1—C1—C2—C3	179.4 (3)	C20-C16-C17-O6	-120.1 (3)
C1—C2—C3—C4	1.6 (6)	C17—O6—C18—C19	94.3 (5)
C2—C3—C4—C5	0.4 (7)	C21—O3—C20—O5	1.9 (6)
C3—C4—C5—C6	-1.9 (7)	C21—O3—C20—C16	-178.8 (3)
C2—C1—C6—C5	0.6 (5)	C15-C16-C20-O5	-167.4 (3)
S1—C1—C6—C5	179.2 (3)	C17—C16—C20—O5	11.1 (4)
C4—C5—C6—C1	1.4 (7)	C15—C16—C20—O3	13.4 (4)
C14—N1—C7—C8	0.4 (3)	C17—C16—C20—O3	-168.2 (3)
S1—N1—C7—C8	-133.46 (18)	C20—O3—C21—C22	97.3 (6)
C14—N1—C7—C15	-168.9 (2)	C7—C8—C23—C24	-46.2 (4)
S1—N1—C7—C15	57.3 (3)	C9—C8—C23—C24	141.6 (2)
N1—C7—C8—C9	-0.6 (3)	C8—C23—C24—C29	-74.8 (3)
C15—C7—C8—C9	167.8 (2)	C8—C23—C24—C25	108.4 (3)
N1-C7-C8-C23	-173.7 (2)	C29—C24—C25—C26	0.4 (4)
C15—C7—C8—C23	-5.4 (4)	C23—C24—C25—C26	177.2 (2)
C7—C8—C9—C14	0.5 (3)	C29—C24—C25—C30	-177.9 (2)
C23—C8—C9—C14	174.2 (2)	C23—C24—C25—C30	-1.1 (4)
C7—C8—C9—C10	-178.5 (2)	C24—C25—C26—C27	-0.5 (4)
C23—C8—C9—C10	-4.9 (4)	C30—C25—C26—C27	177.9 (3)
C14—C9—C10—C11	1.0 (4)	C25—C26—C27—C28	0.1 (4)
C8—C9—C10—C11	-180.0 (2)	C25—C26—C27—C31	-178.8 (3)
C9—C10—C11—C12	0.2 (4)	C26—C27—C28—C29	0.3 (4)
C10-C11-C12-C13	-1.1 (5)	C31—C27—C28—C29	179.3 (3)
C11-C12-C13-C14	0.8 (4)	C27—C28—C29—C24	-0.3 (4)
C12—C13—C14—C9	0.4 (4)	C27—C28—C29—C32	-178.2 (3)
C12-C13-C14-N1	-179.9 (2)	C25—C24—C29—C28	0.0 (4)
C10-C9-C14-C13	-1.3 (4)	C23—C24—C29—C28	-176.9 (2)
C8—C9—C14—C13	179.5 (2)	C25—C24—C29—C32	177.8 (3)
C10-C9-C14-N1	178.9 (2)	C23—C24—C29—C32	0.9 (4)
C8—C9—C14—N1	-0.3 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$
C10—H10····O4 ⁱ	0.93	2.43	3.179 (4)	138
С13—Н13…О1	0.93	2.48	3.030 (4)	118

Symmetry codes: (i) *x*+1, *y*, *z*.

Fig. 1

